04 December 2024, 21:42

Author Topic: Научный дайджест

Unseen

  • Icebreaker
  • *****
  • Posts: 7716
    • RPG diary
Научный дайджест
« Topic Start: 15 November 2012, 08:50 »
Quote (selected)
Искусственная чувствительная и «самозаживающая» кожа

Прогресс в робототехнике впечатляет. Современные роботы умеют прыгать, танцевать, играть на музыкальных инструментах, ходить по канату и многое другое. Особый интерес представляют также человекоподобные роботы. Вот самые яркие примеры андроидов.
Японский инженер Хироси Исигуро (Hiroshi Ishiguro) создал робота Gemonoid HI-1 который копирует его собственную внешность. Невероятно, он даже посадил его читать лекции вместо себя, и некоторые студенты не сразу распознали подвох. Ещё одно японское творение — робот-певица HRP-4C, понимающий речь и способный поддерживать разговор.
Благодаря микромоторчикам, которые вживлены под кожу, этот андроид может выражать на лице разные эмоции. Неизгладимое впечатление оставляет также человекоподобный робот Geminoid DK, созданный датским профессором Генрихом Скарфе (Henrik Scharfe) из Университета Аалборга.

Робот Geminoid DK
[youtube]http://www.youtube.com/watch?v=eZlLNVmaPbM[/youtube]

Несмотря на потрясающую схожесть с человеком, есть у всех подобных роботов серьёзный недостаток. Их покрытие по своим свойствам пока ещё сильно отстаёт от человеческой кожи. В частности, учёным тяжело скопировать функцию самостоятельного «заживления». Одни образцы искусственной кожи восстанавливаются после повреждений только под действием высоких температур. Другим для заживления достаточно и комнатной температуры, но при этом они меняют свою механическую или химическую структуру и, таким образом, могут восстанавливаться всего один раз. Кроме того, ни один «самозаживающий» материал не является хорошим проводником электричества, а это свойство необходимо для взаимодействия искусственной кожи с цифровым миром.

Учёные из Стэнфордского университета сумели впервые объединить в одном материале два свойства — многоразовую «самозаживляющую» способность пластических полимеров и проводимость металлов. Вначале исследователи сформировали пластмассу, которая состоит из длинных цепочек молекул, соединённых водородными связями. Связи между молекулами легко разрушаются, но вскоре после повреждения структура материала самостоятельно восстанавливается даже при комнатной температуре. Далее учёные добавили в эту пластмассу наночастицы никеля, которые не только позволили повысить прочность материала, но и превратили его в отличный проводник.

В ходе экспериментов исследователи скальпелем разрезали пополам тоненькую ленту из нового материала. При соединении кусочков лёгким нажатием уже в течение нескольких секунд материал восстановил 75% изначальной прочности и электрической проводимости. Ещё через 30 минут характеристики материала восстановились почти на 100%. Даже кожа человека не способна так быстро заживать. Что ещё интересно, полимерная лента была разрезана в одном и том же месте 50 раз, и каждый раз «заживление» проходило успешно.
Благодаря электрической проводимости, такой материал можно наделить сенсорными свойствами. При нажатии на «кожу» расстояния между частицами никеля изменяются, что приводит к изменению электрического сопротивления. Это может использоваться для измерения давления на поверхность материала.

По мнению исследователей, их разработка может широко использоваться для протезирования. Кроме того, свойство такого материала быстро восстанавливаться может оказаться полезным при создании электрических устройств и проводов, которые находятся в труднодоступных местах и ремонт которых в случае повреждений является весьма затратным делом. Детальнее работа представлена в публикации An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications.

Ухо как биологическая батарея
Не только кожа у человека является уникальной и неповторимой. Оказывается, внутреннее ухо также скрывает в себе необычайные свойства. Этот сложный орган слуха и равновесия может играть роль естественной батареи. Во внутреннем ухе есть полость, заполненная ионами. Они создают электрический потенциал, используемый для управления нервными сигналами. Данная особенность этого органа уже более 60 лет известна учёным, но до сих пор никто не решался вторгаться в него.
И вот любопытные исследователи из Массачусетского технологического института (МТИ), Массачусетской клиники по проблемам зрения и слуха и совместного подразделения Гарвардского университета и МТИ по вопросам наук о здоровье и технологиям всё же решили поэкспериментировать с внутренним ухом. Конечно же, вместо человека первым пыткам было подвергнуто бедное животное — морская свинка. Страдания несчастной жертвы облегчили применением анестезии.
Учёные имплантировали электроды в биологические батареи уха подопытной свинки. К электродам были подсоединены маломощные электронные устройства, разработанные лабораторией микросистемных технологий МТИ. С помощью сенсоров информация о химических параметрах жидкости внутреннего уха по беспроводному каналу передавалась на внешний ресивер. При этом слух свинки нарушен не был, что подтвердилось соответствующими тестами. В противном случае на исследователей могли бы обрушиться серьёзные судебные иски со стороны Всемирного общества защиты животных.

Ухо преобразовывает механическое воздействие (вибрации барабанной перепонки) в электрохимический сигнал, который далее может обрабатываться мозгом. Биологическая батарея является источником тока для этого сигнала. Полость, которая играет роль батареи, находится в части уха, называемой улиткой. Эта улитка разделена мембраной, некоторые клетки которой предназначены для генерации ионов. Неравновесие между ионами калия и натрия на противоположных сторонах мембраны создаёт электрический потенциал. Чтобы не прерывать слух, потребляемая мощность устройства, подключаемого к электродам биологической батареи, должна быть достаточно малой.
Созданный инженерами МТИ миниатюрный радиомодуль потреблял больше мощности, чем могла обеспечить батарея. Поэтому в микросхеме был использован также конденсатор для накопления заряда, который обеспечивал устройство питанием для подачи импульсов на частоте 2,4 ГГц с периодом «передышки» от 40 секунд до четырёх минут.


Микросхема, питаемая от биологической батареи

Конечно, фантазия рисует возможность создания в будущем портативных потребительских электронных устройств, встроенных в ухо, которые бы получали автономное питание от биологической батареи. Но придётся вас расстроить. Накопленная за 5 часов мощность составила всего около 1,12 нВт. Так что данная разработка подойдёт разве что для организации систем доставки медикаментов внутри организма и питания химических сенсоров, используемых для диагностики органов слуха. Подробнее об исследовании можно почитать в статье Energy extraction from the biologic battery in the inner ear.

Источник: 3dnews.ru
Никогда не приписывайте злому умыслу то, что вполне можно объяснить глупостью. Бритва Хэнлона.